
.

AUTOMATED
PLATFORM MANAGEMENT SYSTEM

SCHEDULING

Larry G. Hull
Code 522

Goddard Space Flight Center
Greenbelt, Maryland 2077 1

299

ABSTRACI-

The Platform Management System was established to coordinate the
operation of platform systems and instruments. The management
functions are split between ground and space components. Since
platforms are to be out of contact with the ground more than the
manned base, the on-board functions are required to be more
autonomous than those of the manned base. Under this concept,
automated replanning and rescheduling, including on-board real-
time schedule maintenance and schedule repair, are required to
effectively and efficiently meet Space Station Freedom mission goals.

In a FY88 study, we developed several promising alternatives for
automated platform planning and scheduling. We recommended both
a specific alternative and a phased approach to automated platform
resource scheduling. Our recommended alternative was based upon
use of exactly the same scheduling engine in both ground and space
components of the platform management system. Our phased
approach recommendation was based upon evolutionary
development of the platform.

In the past year, we developed platform scheduler requirements and
implemented a rapid prototype of a baseline platform scheduler.
Presently we are rehosting this platform scheduler rapid prototype
and integrating the scheduler prototype into two Goddard Space
Flight Center testbeds, as the ground scheduler in the Scheduling
Concepts, Architectures, and Networks Testbed and as the on-board
scheduler in the Platform Management System Testbed. Using these
testbeds, we will investigate rescheduling issues, evaluate
operational performance and enhance the platform scheduler
prototype to demonstrate our evolutionary approach to automated
platform scheduling.

The work described in this paper was performed prior to Space
Station Freedom rephasing, transfer of platform responsibility to
Code E, and other recently discussed changes. We neither speculate
on these changes nor attempt to predict the impact of the final
decisions. As a consequence some of our work and results may be
outdated when this paper is published.

INTRODUCTION

The Platform Management System (PMS) has been established to
coordinate the operation of platform systems and instruments. The
management functions are split between ground and space. TKe
ground segment is designated the Platform Management Ground
Application (PMGA). The space segment is the Platform Management
Application (PMA). The PMS Definition Document (Reference 1)
prescribes that each application includes seven functions. Two of
these functions are associated with the job of maintaining a platform
resource schedule. The Platform Management System must only alter
this resource schedule in response to change requests and changes in
resource availabilities.

Schedule generation is not a function allocated to the Platform
Management System but rather it is performed by a Platform

- Support Center scheduler which furnishes a short term plan. The
PMS manages the short term plan and performs rescheduling (the
PMS conflict recognition and resolution function). Rescheduling is of
particular interest because it is initiated from three sources:
instrument, end user, and the platform itself. As shown in Figure 1,
there are three schedulers of different capabilities involved.

o An on-board scheduler is part of the PMA. Initially, the on-
board scheduler will only reschedule to the extent necessary to
ensure platform and instrument safety until the next contact.

o A ground scheduler is part of the PMGA. This scheduler is
more capable than the on-board scheduler and will integrate
downlinked changes and uplink a revised short term plan.

o A ground scheduler, shown in Figure 1 as the planning
function, is in the Platform Support Center. This scheduler is
the most capable of the three and generates and maintains the
initial schedule, and furnishes the short term plan to the PMS.

Platforms will be out of contact with the ground more than the
manned base. As a consequence, platform operations management
functions, both ground and space, need to be more autonomous than
those of the manned base to effectively and efficiently meet mission
goals. Automated replanning and rescheduling, including on-board
real-time schedule maintenance and schedule repair, are required to
support autonomous operation of platform systems and instruments.

PLATFORM SCHEDULING
-

PLATFORM PLATFORM SUPPORT CENTER

a

b

.

Figure 1

I

',
Our FY88 study objectives were to analyze platform resource
management, to generate functional requirements for platform
scheduling and on-board plan management, and to develop
promising alternatives for automation. We recommended both a
specific alternative and a phased approach to automated platform
resource scheduling. Our recommended alternative was based upon
use of exactly the same scheduling engine in both ground and space
components of the platform management system. Our phased
approach recommendation was based on evolutionary development
of the platform. The results of this study were published (References
2 and 3) and distributed in early 1989.

Our FY89 work focused upon implementation of our recommendation
for platform resource scheduling in a manner that follows the phased
approach and permits the scheduler to evolve over the life of the
platform. We generated requirements specifications and designed a
prototype platform management system scheduler. We also built a
rapid prototype of this scheduler to explore some of the questions
raised during the requirements and design work.

ORGANIZATION OF THE PAPER

The first half of this paper provides our rationale for the use of
'exactly the same scheduling engine for both components of the
platform management system and our recommendation for
evolutionary development. We begin with a definition of platform
scheduling. Next, we introduce the twin problems of schedule
maintenance and scheduler coordination. Having established the
necessary foundation, we provide our rationale and recommendation.

The second half of this paper discusses our prototype platform
management system scheduler. We describe the requirements for
this platform scheduler, for on-board processing, and for ground
processing. Next, we provide the requirements for crosslinking, a
concept that we feel is essential to scheduler coordination. Following
a brief description of our rapid prototype, we discuss our conclusions
and one particularly subtle open issue under the heading of hooks
and scars.

' OBJECTIVES

FY88

o Analyze platform resource management

o Generate functional requirements

- platform scheduling

- on-board plan management -
o Develop automation alternatives

o Recommend specific alternative/approach

FY89

o Implement platform scheduler prototype

- Generate requirements

Provide hooks and scars

o Follow recommended phase approach

PLATFORMSCHEDULING

We define the platform schedule and both ground and on-board
segments of this schedule as a set of envelopes arranged on a
timeline. An "envelope", or "operations envelope", is a request for a
set of resources to be allocated to instrument or platform for some
period of time. Operations envelopes do not include commands to
conduct the activity. A "resource" is either a measurable quantity or
an environment in which to perform an activity that is provided by
the platform to an instrument, e.g., an environmental right.

A schedule or short term plan is said to bear "conflicts" when either
resources are oversubscribed or an environment is provided to one
instrument that is not compatible with the desired environment of
another instrument. In the case of the short term plan, conflicts may
arise from three sources: instrument, end user, and platform. An
example of an end user induced conflict is a request for more of a
resource than is currently available, perhaps generated in response
to a target of opportunity or other real-time event. A platform
induced conflict results from unanticipated reduction in a resource.

Schedule Maintenance

We now define the maintenance problem for a platform scheduler:
given a schedule, identify a segment of the schedule that contains
conflicts and resolve those conflicts without affecting envelopes
outside of the identified segment.

This task differs from that of a "planning" scheduler which generates
the initial schedule. For comparison, we provide our definition of the
schedule generation problem: given a set of requests, investigate
different possible schedules in a search for a schedule that
maximizes some figure of merit, e.g., number of requests scheduled.

Scheduler Coordination

We must also consider how the ground scheduler and the on-board
scheduler will cooperate. The question of a scheme for cooperation
arises because the on-board scheduler and the ground scheduler
both have access to a copy of the short term plan and both receive
requests to change it. This dual access poses the risk that both
schedulers will alter their copies of the on-board plan at the same
time. One new plan might not be compatible with the other.

PLATFORM SCHEDULING DEFlN ITIONS

I

OPERATIONS ENVELOPE

Request for a set of resources to be allocated to an
instrument for some period of time

SCHEDULE / SHORT TERM PLAN

Set of envelopes arranged on a timeline

INITIAL SCHEDULE GENERATION

Given a set of requests, search for a schedule that
maximizes some figure of merit

CONFLICT

A resource is oversubscribed or a an environment
provided for one instrument is not compatible with the
environment desired by another instrument

SCHEDULE MAINTENANCE

W e n a schedule, identify a segment that contains
conflicts and resolve without affecting envelopes
outside the identified segment

SCHEDULER COORDINATION

Given two copies of a schedule, keep the copies
compatible in the face of asynchronous and
independent requests to change the schedule

We considered three possible ways to carve up the scheduling labor:

o Concurrent Scheduling

The ground scheduler alters its copy of the short term plan when it
receives a request. This is driven by a perceived need to be able to
immediately tell a user who makes a change request whether or not
the request can be scheduled. In the case of changes to the on-board
portion of the plan, the ground scheduler incorporates the changes
into its version of the plan.

o Local Scheduling

The on-board scheduler schedules all of the requests that affect the
on-board portion of the short term plan, and the ground scheduler
handles all requests that affect the rest of the short term plan. This
scheme prevents the system from being able to immediately .tell
users the status of their requests to change the on-board portion of
the short term plan.

o Pseudo-scheduling

The ground scheduler assists the on-board scheduler in making
changes to the short term plan. When the ground scheduler receives
a request that falls within the on-board span of the short term plan,
it looks at its copy and determines how it would adjust the plan to
accommodate the request. The ground scheduler does this without
changing its copy of the short term plan. It creates a working copy.
When the ground scheduler determines that it could satisfy the
request, it saves the sequence of actions used along with the original
request. If the ground scheduler is again asked to modify the short
term plan, it repeats the procedure, but uses the working copy.

At the next contact, the on-board scheduler downlinks the master
short term plan, and receives requests and sequences of actions from
the ground scheduler. The ground scheduler then discards the
working copy, and begins anew with the current on-board short term
plan. When the .on-board scheduler receives the request, it first tries
the same sequence of actions taken by the ground scheduler. If it can
do this without having a conflict occur, the request is scheduled in
the way that the ground scheduler determined. If it cannot, then the
on-board scheduler decides how to schedule' the request on its own.

DIVISION OF SCHEDULING LABOR

CONCURRENT SCHEDULING

Ground scheduler

- Alters its copy of the short term plan

- Provides user with immediate feedback

On-board Scheduler

- Provides on-board changes to ground

- Receives updated, altered plan from ground

LOCAL SCHEDULING

Ground Scheduler

- Alters only short term plan not yet uplinked

- Uplinks requests to change on-board plan

On - board Scheduler

- Alters only on-board portion of short term plan

- Downlinks requests to change remaining plan

PSEUDO-SCHEDULING

Ground Scheduler

- Assists .on-board scheduler

On - board Scheduler

- Mimics ground scheduler's actions

.

PHASED APPROACH

.

We developed a conceptual model for implementation of the
platform scheduler and for automation of platform scheduling. Our
model is based upon an assumption that the platform itself will
evolve over time. Our conceptual model provides for three stages of
development over the life of the platforms. We do not presume to
establish dates for each stage in the lifetime of the platform but
simply name the stages of development: baseline, midterm, and final.
These stages of development are shown in Figure 2 and discussed
below.

o Baseline

Initially, we see both on-board and ground platform schedulers
as simple schedule managers. Either local or concurrent
scheduling may be followed. Given the need to be able to
immediately tell a user who makes a change request whether or
not the request may be scheduled, we assume that concurrent
scheduling will be followed. The ground scheduler maintains the
master copy of the short term plan and uplinks replacement for
the on-board plan after first incorporating any on-board changes
(simple safing actions) since the last contact.

o Midterm

At this stage, we see the on-board scheduler as a more
sophisticated schedule manager with limited automated
scheduling capability (enhanced safing) while ground scheduling
is automated, but not yet autonomous. Pseudo-scheduling is
followed with the ground scheduler uplinking both change
requests and the sequences of actions that will schedule these
requests provided the segment of the on-board plan affected has
not changed since the last contact.

o Final

In the final stage, we see platform scheduling as both automated
and autonomous. The platform scheduler takes the entire short
term plan into account in resolving conflicts rather than dealing
with limited segments. The platform scheduling requirement for
scheduler coordination is satisfied by providing exactly the same
scheduling engine in space and ground applications.

PLATFORM SCHEDULER DEVELOPMENT

SCHEDULE SCHEDULE
MANAGER MANAGER

SIMPLE SAFING ENHANCEDSAFM

PLAN REPLACEMENT MIMICS OROUND

ON-BOARD
SCHEDULER

AUTONOMOUS
FlEscHEDuuJo

SCHEDUUNG
MESSAGES

I

SHORT TERM
PLAN

CHANGE
REOUESTS

i *

n SCHEDULE
MANAGER

INTERACTIVE

REPLACEMENT CHANGE
REOUESTS &
DIRECTIVES

PLATFORM
SCHEDULER

AUTOMATED

DIRECTNES

PLATFORM
SCHEDULER

AlJTobJOWUS
FlEsc"G

-7-
I I I

SCHEDULE PSEUDO AUTOMATED
SCHEDULING SCHEDUUNG ' MANAGEMENT '

/

I I I

SCHEDULE PSEUDO AUTOMATED
SCHEDULING SCHEDUUNG ' MANAGEMENT '

/

*

Figure 2

As we have discussed, two platform schedulers are altering two
schedules, with one schedule a subset of the other. The system must
act in such a way that the ground and space components both agree
on the on-board schedule immediately after each contact.

Prototype Operations Concept

Principal investigators submit requests for resources to the planning
scheduler in the Platform Support Center. The planning scheduler
generates the initial schedule and maintains the schedule through
the start of the short term plan furnished to the platform schedulers.
The planning scheduler forwards all requests that have a start time
within the span of the short term plan.

Each request has a priority that the platform schedulers use to
adjudicate conflicts. If two requests have the same priority and are
in contention for the same resources, then we use the order in which
the requests are received by the scheduler to determine a unique
effective priority. A high priority, late amving request can cause an
existing but low priority request to be removed from the schedule.

A "smart" instrument may submit a change request to the on-board
scheduler. This scheduler processes the request if i t has a start time
that falls within the current span of the on-board short term plan. If
the request has a later start time, the on-board scheduler defers it to
the ground scheduler at the next contact.

When fault management detects a change in platform resource
capacities, it provides the on-board scheduler with the new resource
availabilities. At the next contact with the ground, the on-board
component "crosslinks" the schedules so that the space and ground
applications have identical copies of the on-board short term plan
and identical knowledge of the resource availabilities.

PROTOTYPE OPERATIONS CONCEPT

PLANNING SCHEDULER

o Generates and maintains initial schedule

o Furnishes short term plan to platform schedulers

o Passes user change requests within span of plan

GROUND SCHEDULER

o Processes all change requests within span of plan

o Uses request priority to adjudicate conflicts

o Crosslinks schedules and resource requests

ON-BOARD SCHEDULER

o Processes only change requests within span of on-board plan

o Uses request priority to adjudicate conflicts

o Knows present platform resource availabilities

o Crosslinks schedules and resource availabilities

BASELINE REQUIREMENTS

The operations concept discussed above allows many different sets of
requirements, especially in connection with crosslinking. We used
prototyping to identify one set of requirements that will allow this
high-level operations concept. The requirements provided here are
not the only requirements that will enable this operations concept.

Requirements on the Scheduling Engine

Our scheduling engine is a simple priority scheduler that allocates
resources to requests depending upon resource availability and the
priority of the request. For baseline capability, the scheduler needs
to process only very simple kinds of requests. Each request has a
specific start-time and duration, and includes a specification of all
resources needed to accomplish some activity and the required
environment conditions.

We assume that the baseline scheduler should allow the expression
of some scheduling constraints in connection with the placement of a
request on the timeline relative to other requests. However, these
constraints have not yet been defined and our rapid prototype does
not presently allow such scheduling directions.

With these simple requests, the scheduling engine satisfies three
baseline requirements:

o Do not schedule a request if that will oversubscribe resources.

o Do not schedule a lower priority request if a higher priority
request can be scheduled.

o Maintain the schedule so that as many requests as possible are
scheduled at all .times.

BASELINE REQUIREMENTS

SCH EDULl NG REQUESTS

o Priority

o Starttime

o Duration

0 Resources

o Constraints

0 Environmental Conditions

SCHEDULING ENGINE

0

0

0

Do not schedule a request if that will oversubscribe
resources

Do not schedule a lower priority request if a higher priority
request can be scheduled

Maintain the schedule so that as many requests as possible
are scheduled at all times

On-board Processing Requirements .\
The baseline on-board scheduler only adds or defers change Ilequests
from instruments. The on-board scheduler processes all requests that
fall within the span of the on-board short term plan as well as those
that fall outside the time span of the on-board plan by less than the
period between regularly scheduled contacts. Those change requests
with start times within one contact period of the end of the on-board
short term plan would otherwise have to be downlinked, processed,
and uplinked during the crosslink process, which is not necessarily
going to be feasible.

The on-board scheduler must alter the priorities of requests
dynamically if, as in our prototype, a simple priority scheduler is to
be used. It is the simplest way to prevent the ground scheduler from
removing requests scheduled on-board. It ensures that the ground
and space components have the same version of the on-board
schedule immediately after each contact.

No request is submitted to our prototype, whether acting as the on-
board scheduler or the ground scheduler, with a priority greater than
4. We increase the priority of any request scheduled on-board so -

that it is in a range from 5-9. Further, a request that is active (start
time less than current time) is given the highest priority of 10. This
scheme, while not the only possible alternative, does guarantee two
necessary characteristics of the schedule maintained by our priority-
based scheduler proto type:

o Since active envelopes are given the highest priority, the
scheduler will remove active envelopes from the schedule in
response to a degradation in resources only as a last resort.

o When the schedules (on-board and ground versions of the
short term plan) are merged on the ground, all requests
scheduled on-board will be scheduled as well by the ground
scheduler.

BASELINE REQUIREMENTS

ON-BOARD PROCESSING

o Add or defer change requests from instruments

o Process requests within the time span of the on-board plan

o Process requests within one contact period beyond the time
span of the present on-board plan

o Defer all requests beyond the present span plus the time
between ground contacts (nominally one orbit)

o Alter the priorities of the scheduled requests

o Remove active envelopes from the schedule only as a last
resort

Ground Processing Requirements

The baseline ground scheduler both adds and deletes requests. The
ground scheduler processes all requests that fall within the span of
the short term plan. It also merges the on-board versions of the
short term plan into .the ground short term plan during crosslink.

The requests that the ground scheduler processes (ending with a
status of either scheduled or not) and that fall within the span of the
on-board short term plan are uplinked at the next contact period.
The on-board short term plan time span is extended by the time
between contacts at the start of each contact, just prior to crosslink.

Crosslinking Requirements

The crosslink process is the sequence of steps that the on-board and
the ground scheduling systems must accomplish to ensure that the
on-board short term plan and the corresponding portion of the
ground short term plan are exactly the same immediately after each
contact.

Our scheduler prototype implements the crosslink process in three
steps :

o The crosslink is made at a regularly scheduled contact time
(perhaps once each orbit) and both schedulers increase the time
span of the on-board short term plan by one contact period.

o The ground scheduler uplinks all requests with a start-time that
falls within the (updated) span of the on-board short term plan.
The on-board scheduler adds them to the schedule one-by-one
and screens for conflicts after each addition. At the completion of
this process, the platform has an executable on-board short term
plan. .

o As the final step, the on-board scheduler sends the resource
availabilities, the on-board short term plan, and all deferred and
unscheduled requests to the ground. The ground scheduler merges
the present on-board plan with the rest of the short term plan,
screens the new schedule against the current resource
availabilities, and . processes all deferred requests.

BASELINE REQUIREMENTS

GROUND PROCESSING

o Add or delete change requests

o Process requests within the time span of the short term plan

o Uplink requests within the time span of the on-board schedule
at the next contact

CROSSLINKING

0

0

0

0

Crosslink at a regularly scheduled contact time

Increase time span of the on-board pian by the interval
between contacts prior to crosslink

Uplink all requests with a start time that falls within this time
span

Downiink on-board plan, deferred requests, unscheduled
requests and resource availabilities

RAPID PROTOTYPE DESCRIPTION

We built a rapid prototype of the platform scheduler to explore some
of the questions raised during the requirements and design work.
This rapid prototype is designed to be both the on-board scheduler
and the ground scheduler. As the on-board scheduler, the prototype
acts in exactly the same way as the ground scheduler except that it
dynamically adjusts the priorities of requests it can schedule and in
execution. We use this dynamic adjustment of priorities to prevent
requests that are scheduled on-board from being unscheduled on the
ground and to guarantee, that in instances of resource degradation,
the on-board scheduler will not remove active requests except as a
last resort.

Our rapid prototype implements both request management and
conflict recognition and resolution functions. Request management
first determines whether to process (add, delete, replace) a request
or to defer a request. A request is deferred if it falls outside the span
of the current short term plan. After all requests have been
processed, the conflict recognition and resolution function is called to
ensure a conflict free plan. If a conflict is found, this function
resolves it by unscheduling all requests at that time and then
attempting to add them back to the schedule in priority order.

Unscheduling differs from deleting a request. The rapid prototype
will unschedule lower priority requests to accommodate a higher
priority request. However, our prototype does not remove the
unscheduled requests from the schedule. It only changes the status
of these requests. We retain unscheduled requests since subsequent
changes may allow these requests to be rescheduled, e.g., higher
priority requests may be unscheduled or deleted.

The rapid prototype is menu-driven as shown in Figure 3. Our
implementation allows the user to crosslink at any time. When
crosslink is selected, the rapid prototype sequences through the
crosslink steps waiting only for the user to grant permission to
proceed. This manual capability enables us to easily demonstrate
crosslinking. A fully automated capability will be needed to support
emergency crosslink.

RAPID PROTOTYPE MENU SYSTEM

PLANNlNG

Make increment to plan
Increment plan 1 View transaction log

.

Access short term plan
View transaction bg
View deferred requests

I I
Ground Scheduler I- b i

' Planning

On-board Scheduler
InstNment
Fault Management

Crosslink

Access short term plan
View transaction log
View deferred requests

Compare Schedules
Access Clock (demo)
Restart

I L I

l"T

Make change requests
Send change requests
View response

- 1
Input resource changes
View changes
Activate changes

.

Figure 3

HOOKSANDSCARS

The prototype platform scheduler work and our rapid prototype
were guided by the requirements generated in our FY88 study.
These requirements, and the accompanying methodology for
evolution, did not use hooks as the mechanism for evolving the
capabilities of the scheduler. We relied on module replacement.

Module replacement is a reasonable strategy for evolution, but
requires sufficiently powerful data structures at the beginning of the
life cycle. These data structures should, even in the baseline, provide
all of the information to the platform scheduler that it will need in
order to automatically, autonomously reschedule.

The envisioned data structures will express all possible ways that the
platform scheduler can satisfy the need for resources in support of
an activity. By the final stage in development, if any activity must be
removed to make room for a higher priority request, the scheduler
will look at the request for this lower priority activity to see how it
can be rescheduled.

As emphasized, unscheduling differs from deleting a request in our
rapid prototype. The prototype will unschedule requests in order to
accommodate a higher priority request. Unscheduling only changes
the status of these requests. Request management tries to add these
requests back to the schedule when either resource availabilities
change or a higher priority request is deleted from the schedule.

One complication in making changes to the schedule may not be
immediately obvious. A request for one resource can imply a request
for another resource. Power may be an implied resource. The actual
ceiling for power varies not only because of the need for power to
run the platform and operate instruments, but also for requested
resources that only imply the use of power, such as a tape recorder.
Further work is needed on this issue.

HOOKS AND SCARS

MODULE REPLACEMENT

o Provides a reasonable strategy for evolution

o Requires sufficiently powerful data structures at baseline

ENVISIONED DATA STRUCTURES

o Express all possible ways to satisfy a request

o Reduce number of unscheduled requests

o Improve utilization of platform resources

UNSCHEDULING REQUESTS

o Differs from deleting requests

- Status flag is changed

- Request may still be accessed

o May reschedule previously unscheduled requests

- Higher priority request is itself deleted or unscheduled

- Resource availabilities change

IMPLIED RESOURCES

o Implied in a request for another resource

ACKNOWLEDGEMENTS e
The work described in this paper involves a large number of people.
This work could not have been performed without the support of
Gregg Swietek, Strategic Plans and Programs Division, Office of Space
Station. Specific thanks are due to Don Rosenthal, Ames Research
Center, whose presentation of lessons learned at the Boulder
workshop (Reference 4) helped to guide this work. Finally, credit for
specific concepts and for implementation of the rapid prototype of
the schedule belongs to James Retter, System Sciences Division,
Computer Sciences Corporation.

1. Goddard Space Flight Center, "Platform Management System (PMS)
Definition Document", Revision 3, September 1987.

2. Computer Sciences Corporation, "Methodology for Platform
Management System (PMS) Scheduling Automation",
CSC/TM-88/6144, March 1989.

3. Computer Sciences Corporation, "Platform Management System
(PMS) Scheduling Requirements Study", CSC/TM-88/6036,
March 1989.

4. Rosenthal, Donald, "Lessons Learned from HST Scheduling",
Workshop on Operations Planning and Scheduling Systems for the
Space Station Era, University of Colorado at Boulder, Boulder,
Colorado, August l987. .

5 . NASA, "Space Station Program Definition and Requirements
Document", Section 4, Part 3: Space Operations Requirements,
Revision B, SSP 3oo00, Space Station Program Office, Reston,
Virginia, October 1988.

